Classical Gases
Ideal gas
Equipartition Theorem
Each independent square, average value equals to
Diatomic gas
Define:
- $H_{rot}=\sum_{i=1}^{N} \frac{\vec{L}{i}^{2}}{2I}
$\varepsilon{rot}=k_{B}T,\ C_{rot}=k_{B}$$
So:
However, successive freezing of vibration and rotation modes!
Quantum effect at temperature ~
Vibration
Partition function:
Heat capacity:
Define characteristic temperature:
- High temperature limit:
- Low temperature limit:
Rotation
Partition function:
Define characteristic temperature:
- High temperature limit:
$$Z\approx \int {0}^{\infty} e^{ - \frac{\theta{rot}}{T}x }, dx=\frac{T}{\theta rot}\implies C_{rot}=k_{B}$$ - Low temperature limit:
Interacting gases
Virial Expension: (expension in small parameter n)
Compute