Thermodynamics
Equalibrium
- Properties (measurements) do not change over obeservation time
- e.g.
0th Law
- A
B, B C A B - As the consequence:
We can defineas Temperature. And is Equation of state - $T=\frac{(PV){sys}}{(PV){tri}}\times 273.16K$
1st Law
Adiabatic wall: no heat exchange
diathermic wall: can heat exchange
isolated systemState1
State2: “Inner Energy”: State1
State2: “Heat”: or Quasi-static process:
is the generalize force (Intensive quantity), and is the generalized displacement (Extensive quantity) Heat capacity:
- Const. V:
$$
C_{V} = \left( \frac{\mathrm{d} Q}{\mathrm{d} T} \right){V}=(\frac{\partial U}{\mathrm{\partial} T}){V}
$$- Const. P:
$$
C_{P}=\left( \frac{\mathrm{d}Q}{\mathrm{d}T} \right){P}=\left( \frac{\partial U}{\partial T} \right){P}+P\left( \frac{\partial V}{\partial T} \right){P}=\left( \frac{\partial H}{\partial T} \right){P}
$$: Enthalpy
e.g. Ideal Gas: Jouler’s Expension:
$$C_{P}-C_{V} =P \left( \frac{\partial V} {\partial T} \right){P}=Nk{B}$$
Heat Engine
2nd Law
- Kevin: No process is possible whose sole effect is complete conversion of heat to work
Clausius: No process is possible whose sole effect is transfer of heat from colder to hotter body - Carrot Engine:
- Cycle, reversible
- Operates between two heat baths at temperatue
and - Carrot Thereom: Carrot is the best
- Clausius Inequality
- Carrot:
- Other cycles:
( : temperature of heat bath)
- Carrot:
Entropy
- Reversible:
potential: entropy
Infinitesimal:
- Inreversible:
Infinitesimal:
- Adiabatic process:
, e.g.1. Jouler’s Expension:
e.g.2. ![[1.Thermodynamics 2023-10-30 18.35.49.excalidraw]]
Consider a const volumn process:
Choose a reversible process to calculate
: natural variable S, V.
Systems of variable particles
- Can happen: open system; phase transition
: Extensivity, - Thermodynamic limit:
fixed. - Short-ranged interaction
- Consequence of extentivity:
: 1st order homogeneous function.
: scale factor.
Differential and
__Gibbs-Duhem relation: __
- Thermodynamic limit:
Thermodynamic potentials
, we are at liberty to choose other variables. - Enthalpy:
- Helmholtz Free Energy:
- Gibbs Free Energy:
- Grand potential:
(Gibbs-Duhem relation)
Towards Equal
fixed, fixed, fixed,
Maxwell’s Relation
$$\left( \frac{\partial U}{\partial S} \right){V}=T,\ \left( \frac{\partial U}{\partial V} \right){S}=-p,\ \therefore \frac{\partial ^{2}U}{\partial S \partial V}=\left( \frac{\partial T}{\partial V}\right){S}=-\left( \frac{\partial P}{\partial S} \right){V}$$
Relate quantities to experimentally measurable quantities.
- e.g. Heat Capacity
$$C_{V}=\left( \frac{\partial U}{\partial T} \right){V}=T\left( \frac{\partial S}{\partial T} \right){V},C_{p}=\left( \frac{\partial H}{\partial T} \right){p}=T\left( \frac{\partial S}{\partial T} \right){p}\text{And }\left( \frac{\partial S}{\partial T} \right){p}=\left( \frac{\partial S}{\partial T} \right){V}+\left( \frac{\partial S}{\partial V} \right){T}\left( \frac{\partial V}{\partial T} \right){p} \therefore C_{p}-C_{V}=T\left( \frac{\partial S}{\partial V} \right){T}\left( \frac{\partial V}{\partial T} \right){p}=T\left( \frac{\partial p}{\partial T} \right){V}\left( \frac{\partial V}{\partial T} \right){p}$$ - Response Function
- Extensivity:
- Conpressibility: $\kappa_{T}=- \frac{1}{V}\left( \frac{\partial V}{\partial p} \right){T}
$\therefore C{p}-C_{V}=\frac{TV\alpha^{2}}{\kappa_{T}}$$
- Extensivity:
Phase Equalibrium
Partition into uniform subsystem.
Maximize, subject to constraint:
Lagrange Multiphier:
Stability condition:
is maximiazed.
e.g.Choose
as independed variables: :
$$\text{So: } \delta S=\left( \frac{\partial S}{\partial T} \right){V}\delta T+\left( \frac{\partial S}{\partial V} \right){T}\delta V,\ \delta p=\left( \frac{\partial p}{\partial T} \right){V}\delta T+\left( \frac{\partial p}{\partial V}\right){T}\delta V\Rightarrow\left( \frac{\partial S}{\partial T} \right){V}(\delta T)^{2}+\left[ \left( \frac{\partial S}{\partial V} \right){T}-\left( \frac{\partial P}{\partial T} \right){V} \right]\delta T\delta V-\left( \frac{\partial p}{\partial V} \right){V}(\delta V)^{2}\geq 0$$ $$\text{Maxwell Relation: }\left( \frac{\partial S}{\partial V} \right){T}=\left( \frac{\partial P}{\partial T} \right){V},\left( \frac{\partial S}{\partial V} \right){T}=\frac{C{V}}{T},-\left( \frac{\partial p}{\partial V} \right){T}=\frac{1}{V\kappa{T}}
\therefore C_{V}\geq 0,\ \kappa_{T}\geq 0$$