Thermodynamics

Stardustor Lv2

Equalibrium

  • Properties (measurements) do not change over obeservation time
  • e.g.

0th Law

  • AB, BC AB
  • As the consequence:


    We can define as Temperature. And is Equation of state
  • $T=\frac{(PV){sys}}{(PV){tri}}\times 273.16K$

1st Law

  1. Adiabatic wall: no heat exchange
    diathermic wall: can heat exchange
    isolated system

  2. State1State2: “Inner Energy”:

    State1State2: “Heat”: or

  3. Quasi-static process:

    is the generalize force (Intensive quantity), and is the generalized displacement (Extensive quantity)

  4. Heat capacity:

    1. Const. V:

    $$
    C_{V} = \left( \frac{\mathrm{d} Q}{\mathrm{d} T} \right){V}=(\frac{\partial U}{\mathrm{\partial} T}){V}
    $$

    1. Const. P:

    $$
    C_{P}=\left( \frac{\mathrm{d}Q}{\mathrm{d}T} \right){P}=\left( \frac{\partial U}{\partial T} \right){P}+P\left( \frac{\partial V}{\partial T} \right){P}=\left( \frac{\partial H}{\partial T} \right){P}
    $$

    : Enthalpy

e.g. Ideal Gas: Jouler’s Expension:


$$C_{P}-C_{V} =P \left( \frac{\partial V} {\partial T} \right){P}=Nk{B}$$

Heat Engine

2nd Law

  1. Kevin: No process is possible whose sole effect is complete conversion of heat to work
    Clausius: No process is possible whose sole effect is transfer of heat from colder to hotter body
  2. Carrot Engine:
    • Cycle, reversible
    • Operates between two heat baths at temperatue and
    • Carrot Thereom: Carrot is the best
  3. Clausius Inequality
    • Carrot:
    • Other cycles: (: temperature of heat bath)

Entropy

  1. Reversible:
    potential: entropy

    Infinitesimal:
  2. Inreversible:

    Infinitesimal:
  3. Adiabatic process: ,
    • e.g.1. Jouler’s Expension:

    • e.g.2. ![[1.Thermodynamics 2023-10-30 18.35.49.excalidraw]]

      Consider a const volumn process:

      Choose a reversible process to calculate


    • : natural variable S, V.

Systems of variable particles

  • Can happen: open system; phase transition
  • : Extensivity,
    1. Thermodynamic limit: fixed.
    2. Short-ranged interaction
    3. Consequence of extentivity:

      : 1st order homogeneous function.
      : scale factor.

      Differential and
      __Gibbs-Duhem relation: __

Thermodynamic potentials

  1. , we are at liberty to choose other variables.
  2. Enthalpy:
  3. Helmholtz Free Energy:
  4. Gibbs Free Energy:
  5. Grand potential:
    (Gibbs-Duhem relation)

Towards Equal

  1. fixed,
  2. fixed,
  3. fixed,

Maxwell’s Relation

$$\left( \frac{\partial U}{\partial S} \right){V}=T,\ \left( \frac{\partial U}{\partial V} \right){S}=-p,\ \therefore \frac{\partial ^{2}U}{\partial S \partial V}=\left( \frac{\partial T}{\partial V}\right){S}=-\left( \frac{\partial P}{\partial S} \right){V}$$
Relate quantities to experimentally measurable quantities.

  • e.g. Heat Capacity
    $$C_{V}=\left( \frac{\partial U}{\partial T} \right){V}=T\left( \frac{\partial S}{\partial T} \right){V},C_{p}=\left( \frac{\partial H}{\partial T} \right){p}=T\left( \frac{\partial S}{\partial T} \right){p}\text{And }\left( \frac{\partial S}{\partial T} \right){p}=\left( \frac{\partial S}{\partial T} \right){V}+\left( \frac{\partial S}{\partial V} \right){T}\left( \frac{\partial V}{\partial T} \right){p}\therefore C_{p}-C_{V}=T\left( \frac{\partial S}{\partial V} \right){T}\left( \frac{\partial V}{\partial T} \right){p}=T\left( \frac{\partial p}{\partial T} \right){V}\left( \frac{\partial V}{\partial T} \right){p}$$
  • Response Function
    1. Extensivity:
    2. Conpressibility: $\kappa_{T}=- \frac{1}{V}\left( \frac{\partial V}{\partial p} \right){T}$\therefore C{p}-C_{V}=\frac{TV\alpha^{2}}{\kappa_{T}}$$

Phase Equalibrium

  • Partition into uniform subsystem.

    Maximize , subject to constraint:

  • Lagrange Multiphier:



  • Stability condition: is maximiazed.





    e.g.

    Choose as independed variables: :
    $$\text{So: } \delta S=\left( \frac{\partial S}{\partial T} \right){V}\delta T+\left( \frac{\partial S}{\partial V} \right){T}\delta V,\ \delta p=\left( \frac{\partial p}{\partial T} \right){V}\delta T+\left( \frac{\partial p}{\partial V}\right){T}\delta V \Rightarrow\left( \frac{\partial S}{\partial T} \right){V}(\delta T)^{2}+\left[ \left( \frac{\partial S}{\partial V} \right){T}-\left( \frac{\partial P}{\partial T} \right){V} \right]\delta T\delta V-\left( \frac{\partial p}{\partial V} \right){V}(\delta V)^{2}\geq 0$$

    $$\text{Maxwell Relation: }\left( \frac{\partial S}{\partial V} \right){T}=\left( \frac{\partial P}{\partial T} \right){V},\left( \frac{\partial S}{\partial V} \right){T}=\frac{C{V}}{T},-\left( \frac{\partial p}{\partial V} \right){T}=\frac{1}{V\kappa{T}}\therefore C_{V}\geq 0,\ \kappa_{T}\geq 0$$